Aurinea jonequeri (Cuatrec.)
Monografías de Flora y Vegetación Bética es una serie de publicaciones editada bajo el patrocinio del convenio ICONA-Universidades andaluzas.

Redactores:
Gabriel Blanca López
Francisco Valle Tendero

Imprime: COPISTERIA LA GIOCONDA
Melchor Almagro, 16
Depósito legal: GR-69-1986
GRANADA

Granada, Febrero 1986
Monografías de Flora y Vegetación Bética es una serie de publicaciones editada bajo el patrocinio del Convenio IOA-Universidades andaluzas.

Redactores:
Gabriel Blasco López
Francisco Valle Tendoro

Imprime: COPISTERIA LA GIOCONDA
Méjico Almagro, 16
Depósito Legal: GR-69-1986
GRANADA

Granada, Febrero 1986
Las plantas endémicas de Andalucía oriental.

por

Gabriel Blanca & Francisco Valle

Resumen: Se discuten las posibles causas de la riqueza en especies endémicas de la provincia de Jaén (Andalucía, España). En esta primera contribución se señala el nombre correcto, sinonimia, descripción, tipo, número cromosómico y carácter endémico, distribución, ecología, fitogeografía, listas taxonómicas y medidas de conservación para 5 taxones endémicos. Se propone una nueva combinación: Vicia glauca C. Presl in J. C. Presl subsp. javanica (Couret.) Blanca & Valle, stat. nov. Para el primero se estudia por primera vez el número cromosómico de esta cita taxa (2n = 16).

Abstract: The possible causes of the abundance in endemic plants of the Jaén province (Andalusia, Spain) are discussed. The correct name, synonymy, description, type, chromosome number and endemic-type, distribution, ecology, plant geography, taxonomic lists and conservation for five endemic taxa are studied. A new combination is proposed: Vicia glauca C. Presl in J. & C. Presl subsp. javanica (Couret.) Blanca & Valle, stat. nov.; the chromosome number of this taxa is studied (2n = 16).
INTRODUCCIÓN

El endémico y su ciclo

El endémico es un fenómeno de estacionalidad, es decir, de área de distribución restringida a un territorio determinado. El primer autor que utilizó el término en sentido botánico fue DE CAMOES (1760), que llamó 'endémico' por analogía con el lenguaje médico, a las familias y géneros que crecían en un solo país o que, por el cambio, tenían una distribución muy limitada.

La definición de endémico es relativa a la extensión del territorio y el rango del taxon. Cuanto más pequeño sea el territorio menor será la probabilidad de encontrar en él táxones endémicos de rango elevado, tales como una familia o una sección (FAHAGGER, 1969).

Los táxones endémicos constituyen una inadecuación evolutiva; poseen un área florística única, son habitualmente plantas muy raras, poco conocidas de plena definición taxonómica y, a menudo, están en peligro de extinción; este último aspecto preocupa a los ecológicos y, en nuestro caso, de manera particular a los botánicos; ref. F A H A G E R (1976) comenta: "Si se destruye una especie endémica, esta representa una pérdida irreparable, equivalente a un auténtico genocidio: por lo tanto, el conocimiento exacto de las especies endémicas revisae..."
un aspecto práctico e, incluso, una cierta urgencia, ya que varias especies endé
nicas de gran interés aún desaparecieron ya de la faz de la Tierra, incluso antes
de que se las haya podido estudiar.

En el Simposio de Flora Europea de Ginebra (1970), WALTER propuso
iniciar una serie de actividades encaminadas a la protección de las endémicas
de la flora europea. Posteriormente, en 1971, publicó una ficha-tipo a rellenar
en el caso de especies en peligro y señala la necesidad de conservación de las
mismas en jardines botánicos.

RIVARD (1976) señala su propuesta en el Simposio de Bruselas
(1970) de extender dicha protección a las microformas endémicas, pues revisten
a menudo un interés considerable para la historia de la flora y la ciencia de la
evolución, ya que la desaparición de estas microespecies o raras endémicas
vería imposible resolver el problema del origen de especies mucho más comunes.

Pero, ¿cuál es la razón por la que los botánicos dedican tanto
atención a las taxones endémicos? BAIN-BLANGEL (1970) indica que el estu-
dio y la interpretación exacta del endémico en un territorio es el criterio
supremo indispensable para toda consideración relativa al origen, y a la edad
de la población vegetal en que vive. Por su parte, ARRIGONI (1977) señala la
importancia del estudio del endémico como el medio principal de poner en eviden-
cia el carácter de la flora de una región; las plantas endémicas representan el
contingente florístico de un determinado territorio y de ahí se deduce su
patrimonio genético, las vicisitudes históricas que han delineado la fase de la
genesis y la evolución de la flora, el poder creativo y la capacidad conserva-
dora de determinados ambientes.

De todo esto se deduce también que no es una coincidencia que las
áreas de mayor interés botánico sean relativamente ricas en especies endémicas;
además, como señala RICHARDSON (1978), la mayor parte de los grupos de gran difi-
cultad taxonómica, a los que se dedican actualmente numerosos trabajos, contie-
nen una proporción considerable de especies estrictamente separadas, en su
mayor parte de áreas muy restringidas.

En determinadas regiones, las plantas endémicas alcanzan elevados
porcentajes, de tal modo que dan carácter a la flora de dichas zonas. Muchas
áreas pequeñas y muy delimitadas tienen una elevada proporción de endémicas;
así por ejemplo, según los estudios de BRANWELL (1972), las islas Canarias tienen
470 especies endémicas de un total de 1700 (de las cuales, alrededor de 1200
son nativas); por lo tanto, el porcentaje de endémico es elevado a un 50% en
Córcega, según apreciaciones de CONTANERGOPOLUS (1962, 1971), el 30% de los
táxones son endémicos. FAVARGER (1972), estudiando el endemismo en las altas
montañas de Europa y teniendo en base los datos de CONTANERGOPOLUS, concluye
que el 30% de las táxones montañosos de Córcega son endémicos.

También existen bloques continentales que poseen un elevado porcentaje
de especies endémicas; el ejemplo más ilustrativo lo tenemos en la Península
Ibérica, en la que (según apreciaciones de RICHARDSON, 1978), alrededor de la
mitad de sus especies indígenas son endémicas, de las que una tercera parte
(casi el 10% de la flora total) deben interpretarse como endémicas muy restringi-
das. Dentro de estas áreas existen zonas, generalmente montañosas, que poseen
un elevado porcentaje de endémicas; así, FAVARGER (1972) de los siguientes datos
para el nivel alpino de Sierra Nevada (Granada):

Nº de táxones montano	349
Nº de táxones endémicos	125
% de endémicos	36%

y, en la misma Sierra Nevada, MOLERO MEZA (1964) pone de manifiesto la existencia
de 63 táxones exclusivos y 120 compartidos con el Sur de la Península Ibérica.

El escaso conocimiento del endemismo hace muy difícil la profunda
interpretación de la flora de una zona determinada. Sin embargo, debido a la
naturaleza de las mismas plantas endémicas, existen ciertas dificultades en cues-
to a su conocimiento. La mayoría de las veces, estas dificultades estaban en
una falta de exploraciones botánicas de ciertas áreas que podrían dar lugar al
descubrimiento de nuevos endemismos o, por el contrario, a la elevación del
área de un endemismo ya conocido, que hasta entonces se consideraba muy restrin-
gida, de forma que un endemismo localizado podría ser un taxon de distribución
discontinua.

Las causas del endemismo pueden ser diversas; en la mayor parte
de lo cual el área reducida se debe (según KIRIGONT, 1977): a) a la escasa amplitud de los límites de tolerancia de un taxón y los factores ambientales; b) al hecho de que el taxón, por su relativa juventud, no ha podido completar todas las estaciones en las que puede vivir (área de distribución real menor que la potencial); c) al impedimento de la dispersión debido a barreras geográficas, ecológicas o biológicas; e) a la reducción de un área más amplia por efecto de la modificación de las condiciones ambientales idóneas.

Los endémicos han sido clasificados desde muy distintos puntos de vista: atendiendo a las vicisitudes históricas, a las características ecológicas y ecológicas, al rango del taxón, al tipo de génesis, etc. Examinemos a continuación algunas de las más importantes.

Probablemente fue INGLER (1932) el primero en realizar una división de los endémicos en distintas clases, y así, teniendo en cuenta las características del área de distribución, destaca entre "endemias de preservación" y "endemias de desarrollo", que son, por lo tanto, tipos ecológicos de endemias que están en estrecha relación con los problemas históricos que han dado lugar a la distribución actual.

Es evidente que el concepto de endemismo debe ser significativo: aumento de dimensión al área de distribución del taxón, una delimitación territorial precisa sería arbitraria en cuanto que no se pueden poner límites a la utilización del concepto.

INGE (1937) considera que la importancia del endemismo crece con el rango del taxón. Al igual que ENGLER, este autor considera las características del área de distribución y señala que, cuando el área de un taxón es particularmente reducida respecto a su distribución mucho más amplia en el pasado, el endemismo se considera como válido.

INGE se interesa también por la componente inmigratoria del endemismo y denomina "endemias accidentales" al desarrollo en un territorio a partir de cepas genéticas introducidas de otras regiones.

MÉQUIÈ (1961) sigue las líneas de ENGLER y clasifica las endemias de acuerdo con su distribución pasada en "endemias por preservación" y "endemías por creación".
cas por innovación". Además, clasifica los endémicos, en base a su época de origen, en "endémicos palesésinos", "mesógénes" y "neogénes".

RIDLEY (1927) propone reservar la denominación de endémicos para aquellas entidades que están en un área restringida y no se han podido expandir. Su definición de endémico "existente" viene a coincidir, en cierto aspecto, con la consideración de relicto.

CHEVALIER & CIJNDT (1927), siguiendo a BRANIGOT, clasifican las endémicas en "paleoendémicas" y "neoendémicas"; las primeras son relictores que han sobrevivido en una parte restringida de su área; por el contrario, las segundas han aparecido "in situ" y, hasta ahora, no se han extendido por otras áreas.

BRAUN-BLANQUET (1929) considera la clasificación de las endémicas según su edad e indica que las endémicas "paleogénes" (paleoendémicas) son de origen terciario, mientras que las endémicas "neoendémicas" (neoendémicas) son posteriores a las glaciaciones cuaternarias.

Las evidencias utilizadas para asignar una endémica a alguna de estas categorías se basan en su distribución y en consideraciones geológicas (PRENTICE, 1974): así, por ejemplo, especies relacionadas filogenéticamente que están actualmente separadas por el mar, es decir que son tan antiguas como lo fue la última conexión entre sus áreas actuales; algunas endémicas se consideran relictores a causa de su afinidad con otras especies, de las que razonablemente no puede considerarse que se hayan separado a consecuencia de eventos cuaternarios.

BRAUN-BLANQUET utiliza también la especialización ecológica y la falta de plasticidad y de poder expansivo como evidencia de origen antiguo, y así considera que las especies taxonómicamente bien definidas, generalmente, paleoendémicas, y las conflictivas son neoendémicas. Por lo tanto, la evidencia de este autor depende de la igualación de la existencia filogenética con las relaciones filogenéticas, lo cual no siempre es válido.

PRENTICE (1974), criticando las evidencias de BRAUN-BLANQUET, señala que el argumento de la falta de plasticidad de las paleoendémicas es insatisfactorio, ya que "las endémicas restringidas son restringidas en hábitats, raramente se ha comprueba experimentalmente que tuvieron requerimientos ecológicos..."
cos estrictos) y su falta de plasticidad se deduce, generalmente, de la supuesta especialización ecológica y la falta de poder expansivo de la restricción espacial.

Por otro lado, en base al rango del taxón, BNAU-Blanquet distingue entre "microendémicas", que son entidades de rango inferior: la especie o especies poco diferenciadas, y "macroendémicas", que son especies aisladas sistemáticamente a entidades de rango superior.

En la práctica, es bastante difícil establecer la época de origen de una especie, por lo que se consideran antiguas las entidades sistemáticas y geográficamente aisladas, y recientes las que manifiestan claras relaciones filogenéticas. Esto lleva a la casi total identificación de neoeндémicas con microendémicas y de paleoendémicas con las macroendémicas, a pesar de su diverso significado.

WUFF (1942) propone el término de "endémac local" para los táxones cuyo área se reduce a unas pocas localidades. Su término de "endémac ecológico" es aplicable a aquellas entidades cuyo área es estrictamente dependiente de condiciones ambientales muy precisas, y así pueden distinguirse táxones serpentinoendémicos, calcariendoemácicos, psmoendémicos, etc. GAUSEN & LEBEDE (1949) insisten sobre la importancia florística del endémico y clasifican las endémicas en "micro-" y "macro-endémicas": las primeras son especies "no linneanas" o microespecies, y las segundas son especies "linneanas". Esta terminología no tiene, pues, implicaciones con la edad o el origen evolutivo.

La investigación corológica pone en evidencia grupos de endemismos vicariantes, cuya génesis se ha producido a partir de un común progenitor. Dichos vicariantes corresponden a las "formas correspondientes" de DRUE (1897) y al término "endemovicariantes" introducido por GAUSEN & LEBEDE.

En 1961, dichos autores hacen una crítica de las clasificaciones propuestas anteriormente y realizan una nueva clasificación de las endémicas, de acuerdo con la ecología y la génesis de las mismas. Entre sus comentarios destaca algunos de los más significativos:

a) Consideran que la clasificación de las endémicas en micro y macroendémicas es bastante objetiva o, al menos, no es más subjetiva que la clasificación botánica por sí misma.

b) Añaden que la distinción entre paleo- y moderno (paleozóico por conservación y por innovación, respectivamente) tiene dificultades de aplicación práctica y se presenta, a veces, ambigüedades. Para algunos autores, la macroendémica es un todo, un taxón relictual, en retrogradación, que no se ha desaparecido necesariamente en donde se observa actualmente como endémico, sino que es el último reducto que ocupa antes de desaparecer; para otros, una paleoendémica es, simplemente, un taxón antiguo.

c) En cuanto a la clasificación de Braun-Blanquet en endémicas paleogenas (terciarias) y modernas (postterciarias), opinan que, a pesar de ser bastante clara, resulta bastante arbitraria.

d) Aunque no es importante conocer la edad de los táxones, es el único criterio a considerar para el estudio del endemismo, sino que es esencial conocer su modo de formación y su relación con las relaciones de parentesco con táxones próximos de regímenes vecinos. Además, las clasificaciones anteriores no tienen en cuenta el modo de formación más frecuente entre los táxones endémicos, la "diferenciación".

e) Las tendencias de endemismo y "variación se superponen parcialmente.

Para estos autores, el parentesco entre los táxones, en la medida que al análisis citogenético permite dilucidarlo, es el criterio básico para clasificar las endémicas. La clasificación propuesta por dichos autores es la siguiente:

1. Palaeoendémicas: son táxones sistemáticamente aislados, tales como géneros monoespecíficos, especies que constituyen por sí mismas una sección, etc. Se trata de táxones antiguos, generalmente poco variables, en veces de extinción. Por lo tanto, es un endemismo por conservación o endemismo relictual. Son, a menudo, diploidos, pero también pueden ser poliploidoides.
2.- **Equipoendémicos** son tóxamos que resultan de la diferenciación lenta y progresiva ("especiación gradual") de un taxon primitivo en las diversas partes de su área, por medio de las pequeñas mutaciones génicas y recombinaciones. En unos casos, el ejeamiento geográfico procede a la diferenciación; en otros, la diferenciación actúa en las diversas partes de un territorio continuo. Las áreas de los tóxamos o benignos se superponen en principio hasta que algún rendimiento divide el área primitiva y cada uno de los tóxamos ocupa entonces una pequeña región aislada. Los tóxamos equipoendémicos tienen un origen común, su formación se similitudes y, como se han originado por "especiación gradual", tienen siempre el mismo nombre nomenclatural.

El equipoendémico, es, ante todo, un medio de formación del nó de la diversidad, y, por lo tanto, es independiente de la edad de los tóxamos. Un grupo en el que va a actuado este proceso puede estar constituido por "buenas" especies, por subespecies, etc. Para que se produzca el equipoendémico es necesario una cierta variabilidad genética, diferentes ambientales en las distintas zonas ocupadas y aislaendo especial o geográfico.

Es conveniente señalar que los conceptos de equipoendémico y vicariantes son íntimamente ligados, como dijese FAHRNER (1964); según este autor, en muchos grupos la evolución se ha llevado a cabo por una simple diferenciación genética, es decir, una población primitiva y variable se fragmenta en diversos tóxamos, cuyas áreas son, en principio, continuas y no se puede saber si uno de ellos es más antiguo que los otros; si se produce el clima y la evolución se convierte en equipoendémico. FLYNNER define "equipoendémico inactiva" o equipoendémico en potencia a una fase activa o progresiva en la evolución de la flora.

Para concluir: en la existencia de equipoendémico verdadero, es preciso tener cierto grado de certidumbre al pensar que el área de todos los tóxamos endémicos acuña las formas un día un área continua, que fue desgajada posteriormente; aventamos, ninguno de los tóxamos en cuestión debe presentar caracteres más primitivos que los demás.

3.- **Heteroendémicos** son tóxamos que han permanecido disjuntos en un territorio dado mientras que en áreas vecinas, han dado lugar a tóxamos correspondientes poliploides; el área de este último es, en general, más amplia y se han originado, a menudo, por cruzamiento (allopoliploides), más rara-
mente por autopoliploidía. Muchas veces estos táxones han sido considerados como variantes de otros de mayor área de distribución; por lo que tenían que ser microendémicas y, por lo tanto, neocóndicas, cuando en realidad son formas más antiguas que han dado lugar a esos táxones de mayor área.

4. Apendiculares: son táxones que se han originado en una región determinada por poliploidización ("especiación brusca") a partir de un taxón de área más o menos amplia y diploide o, en todo caso, de nivel de poliploidía más bajo. Es, por lo tanto, un caso inverso al patroendemismo. Son táxones poliplo
des muy similares morfológicamente, pero no idénticos.

Por último, dichos autores llaman criptoenδémicas a los táxones aún no reconocidos por la sistemática, pero que difieren por su número cromosómi
c de otros táxones de mayor área.

El paleo- y patroendemismo representa la componente conservadora de la flora de un territorio, la parte reláctica, mientras que el esquiso- y apo-endemismo son la componente innovadora, el endemismo autóbótico.

Por lo tanto, son ventajas evidentes de esta clasificación el que no considere como importante la edad de las endémicas, a menudo muy difícil de estimar, y que cada categoría ofrece una significación histórica y biogeográfica particular.

Un caso extremo de endemismo con dificultad para ser detectado es lo que denomina Grant como "quintos de especiación" y que ha sido descrito ampliamente por Lewis (1972). Se trata de endémicas locales muy recientes, origi
nadas por reorganizaciones cromosómicas en pequeñas poblaciones, sobre todo, en los márgenes de una especie más amplia; morfológicamente, son muy similares a las especies parentales y son consideradas, así mismo, como variantes morfo-
lógicas de las mismas, en ausencia de recuentes cromosómicos que indiquen, por ejemplo, su naturaleza aneuploide o experimentos de hibridación que indiquen fertilidad muy baja de los híbridos forados y en los que la selinosis pueda ser estudiada.

Richardson (1970) explica los problemas planteados por las endémi
cas en taxonomía; para él, toda especie sigue el mismo esquema a lo largo de su historia evolutiva, en el que cambia su status endémico según el estado considerado: toda especie empieza como neocóndica y acaba como paleoenδémico. Sin embargo, muchas especies ocupan grandes áreas, mientras que otras, aún cuan-
do ocultan su área natal, ésta es muy reducida; para estas especies queda la denominación de "hologéndricas". En dicho caso no existe sentido de tiempos y un taxón puede pasar con mayor o menor velocidad a través de zonas sucesivas, ya que el verdadero "núcleo" endémico es muy difícil de determinar. Este autor menciona también que no es equivalente una hológenética que está confinada a su área por razones ecológicas, es otra que está confinada a su área por razones evolutivas y para la que existen otras localidades aisladas, las cuales no puede subrayar. El primer caso sería un endémico intrínseco y el segundo, un especie externo.

Centros de origen y de diversidad genética

Muchos es el discurso sobre las causas de la existencia de zonas privilegiadas que constituyen veredas núcleos de endemismo o lugares en los que su creación de nuevos taxones es más acelerada.

Fawcett (1964) siente que el endémico se representa verdaderamente una aceleración de la evolución y que constituye más bien un efecto negativo: destrucción de biotopos, desplazamiento y reducción de áreas de dastrucción de taxones correspondientes. Los únicos territorios donde la evolución parece "sacera-za" son territorios de conservación, donde, gracias a un clima favorable y a un largo período de tranquilidad, se acumulan las taxones más variables, es principio simétrico y no distribuida, teorizado simétrico y, por fin, simétrico y distinto morfológicamente. Esta aceleración, en realidad, es un efecto de acumulación que el nacimiento de nuevos taxones por mutación sobreponen las puntuos citados a la ecología.

Stebbins & Mayr (1969) utilizan la distribución de los diferentes tipos de endémicos en California para identificar áreas en las que dominan las especies relativas y otras que favorecen más la especiación. Sus conclusiones más importantes se resumen a lo siguiente: en las regiones donde la pujanza es muy alta o muy reducida, las floras tienden a ser relativamente estables y el mayor porcentaje de endémicas son antiquitas o, al menos, no existe, que, en dichas zonas, pueden persistir las especies con pequeños o roles menores en la constitución geográfica; en las regiones intermedias, incluso pequeños cambios clínicos pueden cambiar las condiciones más allá de los límites de tolerancia de las especies que viven en ellas, de modo que han de migrar o desaparecer nuevos límites de tolerancia. En este sentido, la diversidad clástica y zonal que ocurre en las zonas (regiones entre provincias clásticas diferencia-
DAVIS (1971), estudiando los esquemas de distribución de las especies de manzana, encuentra que, a pesar de que existen en todo el territorio, se concentran en áreas de transición entre distintas zonas fitogeográficas y en zonas montañosas donde se mantienen flores de distintas regiones; las áreas más altas son un activo lugar de diversificación. Según este autor, las razones por las que en dichas zonas interesadas existe una mayor especiación son las siguientes: parece ser que las especies centrales en cualquiera de las dos regiones deben tener allí sus límites de tolerancia, están bajo la influencia de climas, incluyendo de sus distritos diferentes y compiten con distintos tipos de vegetación; bajo estas presiones, la selección puede entregar variantes ecológicas adaptadas al nuevo estado, a las que la migración ha llevado a terrenos nuevos; la divergencia ocurre, sobre todo, en las poblaciones periféricas que llegan a estar aisladas por cambios climáticos que se produjeran en el continuo; otro hecho que favorece el establecimiento de poblaciones divergentes es que los hábitats son, a menudo, más abiertos, dando mayor posibilidad de supervivencia; de hecho, el número de las especies que crecen en hábitats abiertos o inestables (como los declives escarpados) es muy alto en las áreas montañosas; por último, existe la posibilidad de hibridación donde se mantienen floras diferentes, siendo muy probable la estabilización de los híbridos. La riqueza de ecosistemas de la zona estudiada la atribuye DAVIS a la diversa topografía y clima, y a los distintos tipos de suelo (especies calizas, ferralíticas calizas, yemas, etc.)

LEWIS (1972) opina que la riqueza de la flora de California está asociada con las extremas diferencias en topografía y clima, diferencias que, frecuentemente, ocurren en muy cortas distancias; los gradientes ecológicos son, a menudo, muy bruscos y los ecosistemas entre tipos de vegetación diferentes suelen ser muy reducidos.

STERNER (1972) recoge las ideas de WRIGHT, para el que la estructura más favorable de una población para la evolución rápida es la división en sub-poblaciones más pequeñas, suficientemente aisladas de las demás y que pueden llegar a diferenciar un bajo la influencia de ciertas presiones de selección, pero entre las que la emigración puede ocurrir lo suficiente como para que complejos de genes adaptativos que aparecen en una sub-población puedan difun-
días a la otra, este autor comenta que las zonas en las que ocurren estos fenómenos son las «óasises» estabili­
dadas, donde se lleva a cabo, sobre todo, la especi­
cación activa, y pues ejemplos de dichas áreas en la flora de California, donde hay, pues, que apoyar dichos postulados: en ellas, la frágil naturaleza de los ecosistemas promueve una alta proporción de extinción de especies, de manera que, en grupos antiguos que han existido en el pasado el fenómeno de la radia­
ción adaptativa, las formas originales han desaparecido y su tiempo duplicados vivientes.

COLLADO y FAVARIS (1974) discuten el hecho de que la región mediterránea parece haber jugado un papel tanto de "nuevo" como de centro de especiación y recogen las ideas de numerosos investigadores anteriores so­
bre este particular: unos piensan que los países ricos en endemismos son, ante todo, aquellos en los que el desarrollo de la flora ha sido poco perturbado; otros piensan que el Mediterráneo, a partir del Plioceno, ha sufrido modificaciones pronunciadas en cuanto a su configuración geográfica y a la latitud­
itud temporal de las zonas climáticas del Cuaternario, lo cual ha originado su riqueza en endemis­
os; por fin, existen otros que insisten en la importancia de la inestabilidad­
dad de medio en el medio endemista activo. Las conclusiones a las que llegan los autores mencionados, en el caso concreto del Mediterráneo, son las siguientes: numerosos hechos evocan una especiación gradual muy antigua que data, al menos, del Pleisceno medio; otros, por el contrario, indican una evolución reciente. Sólo indica­
me, en ciertos territorios, los tipos que han sido poco afectados por las glaciacio­
es, la especiación gradual se ha preservado sin gran discontinuidad, desde las perturbaciones del Mioceno y Plioceno hasta nuestros días: la observación an­
tual es un "norte en el tiempo" que sorprende a grupos en diferentes estados de evolución, toda esto conduce al problema de los "centros de diferenciación" cuyos cauces no están claros.

STACK (1976) señala la importancia de los "centros de diversidad genética" como formadores de nuevas entidades vegetales, indicando los prin­
cipales centros que existen a nivel mundial y la importancia de algunos de ellos, por ser origen del mayor número de plantas cultivadas. Para dicho autor, la zona mediterránea es de mayor importancia en cuanto a plántulas de cultivo, pero es un mayor centro de diversidad de plantas no cultivadas: por otra parte, una elevada proporción de especies y géneros del Centro y Norte de Europa muestran la mayor variación en esencia, y desde aquí han migrado las especies hacia el Norte después de la última glaciaci­ón. Los taxones indican su atención
a dichos centros de diversidad porque en ellos se encuentran los grupos más conflictivos. Una zona particularmente interesante en estudios evolutivos a pequeña escala es, para este autor, la Península Ibérica, ya que comprende zonas cálidas, templadas, semiáridas, costas atlánticas y mediterráneas, mares de aguas frías, fons cordíferas, de pelágicas, marés que exceden los 3000 m. de altura con variables grados de aislamiento, áreas calmas costeras e interiores, depósitos de yesos, etc.

Métodología

Para el capítulo de biogeografía nos hemos basado en Rivas Martínez (1985), y en la denominación de los pisos bioclimáticos hemos seguido a Rivas Martínez (1981).

Para definir el status actual de cada uno de los taxones endémicos, utilizaremos las categorías recogidas en el Libro Rojo de la IUCN, cuyo uso se ha generalizado. Estas categorías son las siguientes:

1. **Especie extinguida** (E): es aquella que no se ha vuelto a encontrar después de haberla buscado repetidamente en las localidades conocidas y en otras probables. Esta categoría incluye las especies extinguidas en su ambiente natural, pero que sobreviven en cultivo.

2. **Especie en peligro** (E): es aquella que se encuentra en peligro de extinción y cuya supervivencia se impone. Si no cesan las causas que la han llevado a la situación actual, es muy probable que la especie desaparezca de la superficie de la Tierra.

3. **Especie vulnerable** (V): es aquella que se puede prever que pasará a la categoría precedente en un futuro inmediato si no cesan las causas en que se ha convertido. En esta categoría están tanto aquellas especies que han llegado a la actual situación por alteración ambiental, como aquellas que todavía sobreviven con suficiente población para que no esté justificada su extinción en el futuro.

4. **Especie para** (P): es aquella que tiene una población mundial mínima y que, a pesar de que actualmente no se encuentra en peligro, está amenazada.
ta a algún riesgo. Comprende aquellas especies difíciles de encontrar en su hábitat natural y, por lo tanto, en peligro de extinción. Una población mundial es crítica cuando está formada por no más de 20.000 individuos. Un área será prioritaria si es inferior a 20 km².

5. Especie indeterminada (??): es aquella que se sabe está incluida en alguna de las categorías anteriores, pero sobre la cual no se dispone de información suficiente para determinar cuál de las cuatro categorías es la correcta.

6. Especie insuficientemente conocida (??): es aquella que se sospecha que se amenaza, sin embargo, no se tiene ciencia cierta, que pertenece a alguna de las cinco categorías precedentes, pero sobre la cual se carece de información.

7. Especie fuera de peligro (O): es aquella incluida anteriormente en una de las cinco categorías anteriores, pero que ahora se considera relativamente segura, debido a la adopción de medidas eficaces para su conservación o porque se ha eliminado la amenaza anterior que ponía en peligro su supervivencia.

8. Especie no amenazada (N): es aquella que, posiblemente, no está amenazada, siendo el número de individuos conocidos elevado y que vive en su hábitat que no sufre una perturbación preocupante.

También se analizará para cada especie las causas que han llevado al estado actual, así como los peligros que pueden contribuir a su reducción o extinción.

Para la observación de los quesoceos se emplearon métodos radiográfi cos obtenidos por generación de semillas radiogálicas de plantas silvestres. Se pretenden con (4-hidroxiquinolina) 0,002 M. fijación en Carnoy, histología en CLM 25 y tinción en orceína anílica, procediendo a su observación mediante la técnica de la ahumación.

RESULTADOS

El estudio se realizó en la provincia de Jindo.

Numerosos autores han estudiado la flora de la provincia de...
Juan hace notar que los esfuerzos son necesarios para el hallazgo de especies endémicas (BOISSIER, 1841; COOKE, 1849-1863; GAMOOG, 1902; DUGO, 1906; FONT QUER, 1924, 1926; CUATRECASAS, 1927, 1932; RIVAS GORDILLO & BELLOT, 1945; HEWGOOD, 1945; MONTELL, 1952, etc.).

De los datos que figuran en el trabajo de CUATRECASAS (1927) se deduce que el 1% de la flora del Macizo de Mágina son endemismos ibéricos, siendo el 1% del total endemismos exclusivos de dichas sierras, y el 9% especies ibero-norteafricanas.

RIVAS GORDILLO & BELLOT (1945), analizando la composición de la flora de la comarca de Deseoñez-Santa Elena, concluyen que dicha flora es preponderantemente mediterránea y rica en endemismos; el 10% son endemismos ibéricos el 4,8% son ibero-norteafricanos y el 4,8% son endemismos comarcales.

FERNANDEZ (1976), teniendo en cuenta los datos extraídos de la obra de TUTIP & al. (1964-1976), llega a las siguientes conclusiones respecto a la flora de la comarca de la provincia de Jaén: al las sierras de Mágina y Segura abarcan la mitad de los endemismos y norteafricanos de la flora que hay en el total de los estudios, siendo la Sierra de Cazorla la que presenta el 68% de los endemismos de las sierras calizas provinciales; el 25,6% de la flora de la provincia de Jaén son endemismos ibéricos o ibero-norteafricanos.

¿A qué se debe este elevado porcentaje de endemismos? Sin duda han tenido que ejercer una gran influencia la historia geológica, orografía y climatología de la provincia de Jaén. Hace tan sólo 20 millones de años, durante el Eoceno, casi toda la provincia se hallaba sumergida bajo el mar de Tetis; posteriormente, por desacoplo progresivo y por inmersión, el Este-Sur de la Península Ibérica quedó unido al Norte de África y se elevaron, progresivamente, sobre el golfo norteal del Tetis las cordilleras Béticas, dando lugar a la aparición de gran número de nuevos ríos ecocósmicos; ya durante el Cretácico, las glaciaziones hicieron desaparecer a nuevas estrechos vegetales, así bien las Sierras Béticas fueron menos afectadas, gran cantidad de especies sobreviviendo en ellas.

El relieve así formado se caracteriza por la actualidad por su gran torpideidad, incluyendo macizos montañosos que se elevan a más de 2000 m. (Mágina, 2167 m.; Aladén, 2032 m. y karstica, 2107 m.; Onfales, 2020 m.; etc.) que descienden bruscamente y quedan separados entre el por grandes depres-
Fig. 1. Términos geológicos y estratigráficos en el área de estudio de ejemplo.
síntomas que no alcanzan apenas los 100 mm. Esto da lugar a una evolución aprontada de las unidades de vegetación, incluso a la mezcla de las mismas, favorecido por la frecuencia de invasión de temperatura; por lo tanto, las vegetales que colonizaron estas zonas a veces son sometidas a presiones selectivas fortísimas que pudieran llevar a la aparición de nuevas especies.

Respecto a la climatología, en la figura 1 pueden observarse los distintos tipos climáticos presentes en el Centro-sur de la provincia (tomado de AGENAR & al. 1977, modificada); en él se puede observar la trascendencia de los cambios climáticos en muy cortas distancias, sobre todo en las tierras de Régimen, Guadalí y Segura, en las que se pasa de un clima de alta montaña a otro de tipo semiárido, sin pasar intermediarios. También se observa que casi toda la provincia tiene un clima de tipo semiárido y, como ya hemos indicado, las zonas ecotómicas semiáridas son los lugares donde la especiación parece estar acelerada y converge, habitualmente, centros de diversidad genética.

Sobre todo lo ya indicado añadiría la diversidad de los terrenos geológicos (granito, micacitas, calizas, dolomías, yesos, ...), hecho de condicionar que es en la provincia de Jaén donde confluyen todos los requisitos que justifican en su región el estudio de especies endémicas.

Por lo tanto, con este tipo de trabajos que ahora iniciamos pretende contribuir a conocer los terrenos endémicos de nuestra provincia, estableciendo su morfológia, carácter, área de distribución, etc., e incidiendo, sobre todo, en su estado de conservación y en las medidas a adoptar para su protección.

Dado que este lote administrativo de la provincia de Jaén en algunos casos coinciden con la distribución de ciertas plantas endémicas, es nuestra propuesta incluir también aquellas especies endémicas de nuestra provincia, pero que alcancen ciertas localizaciones de algunas provincias vecinas.

(Fig. 2) Planta sufruticosa y glanduloso; tallos numerosos, algo largos, sobre todo en su base, de (10)-15-20-25 cm de longitud, erectos o ascendentes, folíolos en toda su longitud; mayoridades, a veces, dos, de color verde intenso, 0.6-1.8 x 0.5-0.7 cm, lineal-lanceoladas, agudas, atenuadas en la base, enteras, con estipulas muy similares a las hojas, dado aspecto de verticilo. Pedúnculos axilares 0.5-1.6 cm de longitud, con brácteas cerca
Fig. 2.- Viola caespitosa Gendugor (escala 1 cm.).
de su tercio superior; estar brácteas son muy pequeñas, membranosas y caducas. Sépalo lanceolado-agudos, verdes o más o menos purpúreos, bicornos en la base. Flores horizontales intensamente rosal-púrpura, salvo en la base de los pétalos que es blanquecina y con pelos blancos muy cortos. Pétalos revolutelípticos; el inferior (especializado) de 7-8 mm. de longitud, ligeramente más corto que los demás, claramente bifurcado hasta la tercera parte de su longitud, que puede llevar dos manchitas a ambos lados de color rosado-púrpura más intenso. Espacio linear de 20-30 mm. de longitud, ligeramente recurvado, truncado-lanceolado en el ápice, pálido-púrpura con venas más intensamente coloreadas. Cápsulas brevemente ovadas, casi globosas, glabras. Semillas muy pequeñas, 1-2 mm. de longitud, poco comprimidas.

Tipo: "Castuq, Sierra de Casoria al Cerro Gillio, en fiesaque tierra calcar. circa quam dicta Tejo, et in canalic munita ipsius non rare, alt. 1900-1800 m. ubi die "Juni 1902 legi" (Liu, s.n.).

Nombre vernáculo: Viola de Casoria.

Númecro cromosómico y carácter endémico: 2n = 68 (HERMÚLLES a LIPPERT, 1977; LEG a al.,1980); 2n = 64 (HÜPPER, 1972). Es una especie variante de V. delphinium subsp. bolea, que tiene, igualmente, 2n = 68, por lo que estamos ante un caso claro de esquizoendemismo, ya comentado por CONTADORROGÓLES a PAVARES (1974). Que, en este caso, se debe a una extrema especialización ecológica de una especie ancestral de área diseminada con hábitats geográfico ecológicos.

Distribución: (Fig. 3) Sierras de Casoria, del Puzo, de Castriol y de la Cabrilla; masivo de Marmia (provincia de Jéf), una localidad de Cartagena (Sierra de Maimara, provincia de Murcia).

Ecología: Nuevos han sido los estudios que han escrito sobre el comportamiento ecológico de esta especie, si bien podemos observar que existen distintos tipos, a veces muchos de ellos contradictorios. Esto es debido al amplio margen ecológico que presenta, por lo que muchas observaciones parciales pueden llevar a error. Vive en grietas de rocas calizas (a veces ríos en Maignan), donde
se acumula cierta cantidad de nieve, en lugares algo frescos y evitando la fuer­
te insolación estival propia de estas zonas; le podemos encontrar desde pere­
nones verticales a roquedos más o menos horizontales; en distintas orientaciones, dependiendo de la altitud, protección de la misma o de otras rocas, vientos, etc., desde los 1000 a más de 2000 m. de altitud. Tiene su óptimo en los pisos mesosudéticos y supramediterráneo.

Fitogeografía: Dado a los distintos nichos ecológicos donde podemos encontrarrh, difícilmente puede caracterizar a un sintaxis; sin embargo, muchísimas veces se ha dado característica de algunas comunidades; podemos destacar a MELICHOR & CUAHUECAS (1935), que la adscriben a la clase Eupitysae rupstris Br.-
DI. 1929, o a FERNÁNDEZ CARAS (1972), que crea la asociación Isaloștia eucarñas­
sis dentro de la clase Incidens-bosniacites Br.-DI. 1947; estas diferencias nos hacen recorrermos en nuestra idea y consideraría tan sólo como comparte en comunidad de la clase Eupitysae rupstris Br.-DI. 1939, pudiendo aparecer en otros como supracipió en afloramientos rocosos.

Comentario: Si hubiera que elegir alguna especie como representante de la flora giénova, posiblemente la elección recayería en la Y. exasperata y ello es debido a que es la más popularmente conocida y a su indudable belleza, que estúdi­ba en la limitadísima distribución geográfica, su singular belleza y su bioló­gia, pues como ya indica MELICHOR & CUAHUECAS (i.e.), debido a la exo­
ordinaria longitud del espádice, la polinización se realiza por insectos muy especí­

La descripción de CANTOGROSS (1902) fue posteriormente ampliada y rec­
tificada por HERVIER (1909) y fue REYNOLD, en el curso de sus famosas excurs­
aires, el que la halló en numerosas localidades de las serranías de Cáceres que dieron ya una idea clara de su distribución; LAZAR (1905, 1918) la descri­
bió en castellano y lo mismo hizo CUAHUECAS (1929), señalando, además, la distribución precisa en el macizo de Majada, donde ya había sido indicada por CANTOGROSS en 1903. Por ÓTIVIO, LEAL & col. (1990) la localizan en la provincia de Huesca, muy cerca de las serranías de Cantonas.

V. exasperata pertenece a la sect. Phlogionitis V. BECKER, en la que se incluyen, además, otras dos especies, V. flaminiflora y V. appenninica, caracterizadas todas ellas por ser plantas perennes, nutricolas, con flores rojizas o violáceas, largamente pedunculadas; presentan un largo espádice, y el estilo sobrado en su base y ligera y ampliamente ensanchado hacia la parte superior.
nunca capturado. Sin duda, estas tres especies, muy próximas entre sí, proceden de un antiguo ancestro por espiguenderismo, como antes comentábamos; las diferen-
encias morfológicas entre ellas y su área respectiva se indican en la tabla I. Lo-
mo se aprecia en dicha tabla, las dos especies más alejadas con *V. caspium-
lig* son mediterráneas-orientales (véase Fig. 4), por lo que de todas las visperas existentes en España, no hay ninguna otra que sea pareja. Del mismo modo, la disperación geográfica de las especies de la Sect. *Pelopioniopsis* y el fenómeno de variaciones en las distintas áreas demuestran que han de ser elementos arcaico-
siguientes, posiblemente de origen terciario; a partir del Plioceno medio y ya entrado el Quaternario, tiene lugar una profunda redistribución de los terrenos energizados del Mediterráneo, que fue acompañada de fallas, hundimientos, eleva-
dión de cordilleras, etc., que pudo provocar que el área de dispersión de la sp-
ía ancestral sufriera reducido a pequeños fragmentos donde actuaría, sin duda, el aislamiento geográfico, da deriva genética, etc., y un conjunto de factores que provocarían una divergencia en los caracteres suficiente como para que, actual-
mente, las consideremos especies distintas. Por lo tanto, las áreas que ocupan las especies de la Sect. *Pelopioniopsis* representan, actualmente, estaciones de refugio donde ha podido sobrevivir el antiguo ancestro.

Conservación: MEDIO Y CUATRECASAS (1981) apoyándose en el hecho de encontrar-
se la *V. caspium* en comunidades rupícolas muy diversas, suponen que esto es
debe precisamente a su carácter de religua terciaria, de origen inferior a la
aparición de los actuales factores ecológico-climáticos, por lo que está destina-
da a desaparecer, ya que su hábitat tiene condiciones distintas a aquellas que
defiende cuando la especie se estableció. Esto debe ser así atendiendo a la con-
sideración de especie religua que somos más al caer. Por lo tanto, una de las
causas que pueden llevar a su desaparición a lo largo de los siguientes milen-
ios deriva, precisamente, de causas naturales, entre las que se encuentra el
área tan restringida y la modificación ambiental. Aparte de estas causas natura-
les, hay que señalar que, si bien por su particular ecológia no corre peligro, en
lo que se deriva de la utilización del territorio donde vive con fines agropecua-
rios, los incendios y el coleccionismo pueden ser factores decisivos que siem-
pre la desaparición de esta especie de área tan reducida.

En el cuento actual, el status para *V. caspium* es el de "espec-
cie rare", el cual puede pasar a la consideración de "especie vulnerable" con
extremada rapidez, por intervención de los factores mencionados. Como medidas de
protección podemos indicar el reducido al mínimo su recolección y, cuando ésta es
Fig. 4.- Distribución de las violetas incluidas en la sect. Delphinias "

W. Becker: Viola ceorliensis Gendiger; Viola kوساُني

(Degen) Hayek; Viola delphinantha Boiss.
<table>
<thead>
<tr>
<th>COLUMNA 1</th>
<th>COLUMNA 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texto de la columna 1</td>
<td>Texto de la columna 2</td>
</tr>
<tr>
<td>Continuación de la columna 1</td>
<td>Continuación de la columna 2</td>
</tr>
<tr>
<td>Valores adicionales (si applicable)</td>
<td>Valores adicionales (si applicable)</td>
</tr>
</tbody>
</table>
efecto, vegetarán únicamente las partes aéreas, nunca extraer la raíz. Por otro lado, se debe realizar un cultivo, a ser posible en su hábitat natural, con objeto de conservar la diversidad genética, en zonas potencialmente a salvo de incendios, para que pueda ser obtenida por los investigadores o personas interesadas en su resolución.

Vicia aliena C. Presl. in J. & C. Presl. subsp. ginnamene (Cuatrec.) Gliick & Vallee, stat. nov.

(Fig. 5) Planta perenne, pubescente. Tallos decumbentes de 10-40 cm, muy cincos, ramificados, despuntitados de hojas en la base y Vertex media (porción oculta entre las pétalas), angulados, con pubescencia creciente en sentido ascendente, casi glabros en la base. Hojas sésiles de longitud mayor o igual a los entrenudos, raras veces más cortas, sin marcas, imparipinnadas, pequeñas, con 3-5(7) pares de foliolos olorosos a o menos rectos, marginados, de 1.7 x 1.5-2.1-3 mm, las hojas más inferiores pueden tener los foliolos casi ovocítricos. Estípulas externas, raramente pubescentes. Hiecos unilaterales, pubescentes (2-5 flores), apenas superponiendo la longitud de las hojas. Flores pequeñas, casi sésiles de 1.5 mm de longitud; cálices gibosos en la base, venosas, con los cinco dientes casi iguales, lanceolados-agudos, igualando la longitud del tubo; corola blanquecina, poco pubescente o glabros, estandarte con venas visibles pálidas y ovilla corta con dos manchas oscuras. Legumbre de 15-25 x 5-7 mm, totalmente leños, rara vez ciliada en la corteza, con 3-4 semillas.

Tipo: "Vert. AW de Caracas, cencuales 1900-2000 m., 17-VII-1926; MáximaGPC,-idem. est. 2-VII-1925; Máxima Bocoto, bajo Pata de Jam, idem. est. 4-VII-1926" (s.n.).

Nombre vernáculo: Alhejas de las rastras o veje de las rastras.

Númerocronológico y carácter endémico: Rh14 (Fig. 5) es la primera vez que se estima el número cronológico de este taxón. Es un caso de escozenciamento en relación a un asiento geográfico áulico (idea conceptual).

Distribución: (Fig. 7) Marcano de Máximo (provincia de Jam).

Biogeografía: Tan sólo la conocemos del Subsector Subético-Magístico (Sector...
Fig. 5.- *Vitis gleuca* C. Presl. in J. & C. Presl. subsp. *glenovana* (Coutret.)
Bianco & Vallet; A, porte général; B, estipules; C, flore; D, légumine.
Fig. 7.- Vicia gleuca C. Presl. in J. & C. Presl.: A, distribución de la subesp. gleuca; (Cuatreu.) Blanca & Valle; B, distribución general (● subesp. gleuca; ● subesp. gleuca).
Ecológicamente: Se presenta en zonas de climas calurosos y húmedos, en las costas, costas y zonas montañosas. Su presencia está limitada a las áreas costeras de la Península Ibérica, donde se encuentra en áreas de vegetación mediterránea, preferentemente en playas y dunas costeras. La especie es muy adaptable a diferentes climas y condiciones ambientales, lo que la hace un símbolo de la diversidad ecológica del sur de Europa.

Fisiología: Vive en comunidades de la familia Piperaceae en zonas costeras de la Península Ibérica, donde se encuentra en áreas de vegetación mediterránea, preferentemente en playas y dunas costeras. La especie es muy adaptable a diferentes climas y condiciones ambientales, lo que la hace un símbolo de la diversidad ecológica del sur de Europa.

Comentarios: Fue descrita por primera vez en 1932 por el botánico español H. Gilissen, quien describió una nueva especie de la familia Piperaceae. Esta especie fue posteriormente estudiada por otros científicos, como J.G. H. Gilissen, quienes realizaron estudios sobre su taxonomía y distribución geográfica. La especie es conocida por su presencia en zonas costeras de la Península Ibérica, donde se encuentra en áreas de vegetación mediterránea, preferentemente en playas y dunas costeras. La especie es muy adaptable a diferentes climas y condiciones ambientales, lo que la hace un símbolo de la diversidad ecológica del sur de Europa.

<table>
<thead>
<tr>
<th>N. Gilissen, subsp. glauca</th>
<th>N. Gilissen, subsp. glauca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantas</td>
<td>Plantas</td>
</tr>
<tr>
<td>- Hojas con marcescencia</td>
<td>- Hojas con marcescencia</td>
</tr>
<tr>
<td>- Hojas con marcescencia</td>
<td>- Hojas con marcescencia</td>
</tr>
<tr>
<td>- Dientes del cáliz largos</td>
<td>- Dientes del cáliz largos</td>
</tr>
<tr>
<td>- Flores más largos</td>
<td>- Flores más largos</td>
</tr>
<tr>
<td>- Lehmbra glabra</td>
<td>- Lehmbra glabra</td>
</tr>
<tr>
<td>- Lehmbra glabra</td>
<td>- Lehmbra glabra</td>
</tr>
</tbody>
</table>
Observando el mapa de distribución de **V. glaucum** (Fig. 7) se deduce que los eventos geológicos ocurridos en el área de distribución de esta especie han intervenido decisivamente en su evolución. Durante el Alcúmeno se inició una desecación progresiva del antiguo mar de Tethys, que quedó reducido a unas pocas lagunas interiores, de manera que hace unos 5 millones de años, durante el Plioceno, Europa y África estaban conectadas por numerosos puentes continentales originarios por levantamiento de grandes masas montañosas sobre el golfo del Egeo. Durante este periodo, **V. glaucum** se extendió, probablemente, por una zona continental común que incluía el Sur de España, Norte de África y las islas de Córcega y Cerdeña (distribución actual), a la vez que se producía el levantamiento de grandes cadenas montañosas, se superpuso de nuevo gran parte del área primitiva, quedando esta desagregada en las localidades mencionadas; el último evento geográfico y la declive general ocurrieron recurrentemente en las poblaciones del país de Mégara, de modo que la evolución ha conseguido diferencias morfológicas suficientes que, junto a la separación de sus áreas respectivas, nos han llevado a considerarla como subespecie.

Conservación: El status para este taxón sería el de "especie en peligro" de área puntiforme, ya que el número de ejemplares es muy bajo y el área mucho menor de 2 km², con lo que en cualquier momento puede producirse un desgaste en la población, debido a la falta de diversidad genética. Como se ha destacado en el apartado anterior, las causas que han llevado a esta situación no son enteramente naturales. Aparte de su rareza, pocos son los peligros adicionales a los que se encuentra sometida en la actualidad, en parte debido a que su hábitat característico no es fácil accesible. Sin duda un estricto control de la zona, que sirva para evitar la explotación, podría poner en serias dificultades de supervivencia a esta especie.

Descripción botánica:

(Fig. 6) Planta perenne, con cimosa gruesa, sencilla o poco ramificada, asemejándose a un acebo o enramado, tallo ampliamente blando-tomentoso, arqueado de 1 a 4 cm. de alto, plano a convexo, de color pálido, de lugar a un manto de fibra más o menos densa, surcada por venas de color gris. Hoja de número considerable, dispuestas en una fila apretada, enteras, ovadas a oval-lanceoladas, las inferiores 25-75 cm de largo, las superiores más pequeñas; pecíolo robusto y subcubierto en el haz y arqueado-tomentoso en el envés, con nervadura muy pronunciada, peciolo corto de 3-10 cm, blando-tomentoso y exfoliante. Capítulos generalmente solitarios, e
Fig. 8. - *Fuginita funguera* Coetzer: A, parte general; B, detalle de la flor; C, aquélla; D, detalle del gineceo; E, estambre (escalas 1 cm.)
veces en grupos de 2-3 sujetos por cortas ramificaciones blanco-tonantes de 0,5 - 1 cm. de longitud, generalmente útiles. Incluye 20 x 18-22 mm. globosos o ovoideos con tráctas subrostrados. Las extremidades más cortas, las inferiores generalmente más largas, lanceolado-líneares, acúgulas, con bordes subgranado- blanco-tonantes con ápice verdoso. Hojas 16-22 mm. de longitud, rosadas a purpúreas, regulares, glabras, con tubo estrecho y líneas midribundiformes. Elvidijado en 5 lecciones lineares, obtusas, que alcanzan de 1/2 x 1/3 de su longitud total. Estambres con filamentos glabros; anteras lineares canudas en la base. Aquenios de 5-7 mm. de longitud, levemente arqueados, de sección circular o ligeramente tetragonal, finamente estratados, estratificados en su base y truncados en el ápice, coronados por un rebordillo irregularmente dentillado y terminados por un pequeño ápice acúgulo central; a veces, presenta pequeñas rugosidades hasta la base. Vilano (18-20 x 22 mm.), tres veces más largo que el aquenio, caduco, compuesto de pelos finos, dentillados, dispuestos en numerosas series, los extremos cortos y el resto progresivamente mayores.

Tipo: "Inter saxa calcareae cassinii montis Cárcoles dictis (Máq. Regn. Gleenense) ad 1900-2000 m.alt., die 5 Iulii 1926, legit Quatrecegas" (n.v.).

Número cronológico y carácter endémico: No hemos podido determinar el número cronológico de J. Quatrecegas, por lo que solamente podemos postular su carácter endémico. Si tenemos en cuenta que esta planta tiene más especies más afines en las montañas del extremo oriental mediterráneo (CUATRECEGAS, 1929: 461), nos parece que la significación de este endemismo es similar a la que hemos comentado para Vioa cassiliana, es decir, que debe tratarse de un "especiendemismo" posiblemente de origen Territorial, al igual que hemos de insistir que para lo que fuese el número cronológico del conjunto de especiendemismos debería ser el mismo.

Distribución: (Fig. 1) Vertiente Norte del Cerro Cárcoles entre 1700 y 1900 m. de altitud, pr. Torres (Jd.).

Biogeografía: Se trata de uno de los endemismos que caracterizan el Subsector Subbético-Magrebino, dentro del Sector Subbético (provincia Bética).

Ecología: Vive en cañonales calizos, sobre los 1400 m. en laderas orientadas al Norte y Noroeste, en el piso omo-cárstico. Al poseer largas y ramificaciones razonables, pueden asentarse por las lajitas y cantos huecos del suelo, de donde podrá extraer el agua y alimentos. Estas formaciones de mobilidades presentan, como factor mínimo, el agua, ya que el substrato móvil impide el escurrimiento de la misma; esto, junto a la gran variedad presente en esta zona, produce, además de
Fig. 9.- Distribución de *Acrobota pentoperi* Quatrec.
La presencia de lugares reales antes mencionadas, la existencia de hojas similares al suelo con el haz verde y el envés (lugar donde son más numerosos los estom-
axi) blanco-tomentoso, con pales areniscosos que se cuenan totalmente, creando así una microcentrosfera donde la humedad relativa es mayor que al ambiente circun-
dante, dificultando así la evapotranspiración.

Fitoecología: Descripción geográfica de la asociación Empia agymet-al
Iberia arenisses descrita por OUKEL (1993), basándose, entre otros, en los
inventarios levantados por CUAHINCAS en el mismo lugar donde vive la
jurisdicción

Comentario: Se dispone de escasa bibliografía sobre esta especie tan poco conocida; únicamente, los trabajos de CUAHINCAS (1927, 1928), dan completa informa-
ción de su morfología y su relación con otras especies. En el ámbito de la Pe-
nedosa ibérica no existe ninguna dificultad para diferenciarla de las otras las
estaciones que viven en la misma, E. nemula (Cef.) DC, y E. spinata (Lag.) DC,
y que la primera, aunque en aculeo, presenta las hojas piniformes, mientras que la segunda tiene un tallo de 5-10 cm, y hojas piniformes.

Conservación: Lo que más llaza la atención sobre este interesante endemismo gien-
nera es su amplísima área de distribución; según los datos de que disponemos, dicha área no supera los 10 km² y hay que destacar que es muy susceptible debido a la especificidad de su hábitat, por lo tanto, considerando que el afe-
tado habrá que darle el de "espécie en peligro", pues en la actualidad se encuentra en peligro de extinción, siendo el número de individuos conocido real-
mente crítico, ya que, según nuestros cálculos, no debe ser superior a los 500 ejemplares. No obstante, parece ser que los causas que han llevado a esta situa-
ión son completamente naturales. Como ya hemos apuntado anteriormente, esta es-
pécie no puede constituir un "enemigo", ya que su total aislamiento taxonómi-
co con el resto de las especies del género que viven en áreas próximas hace des-
cartar esta posibilidad; lugar, sin duda, constituye un elemento antiguo, una es-
pécie relictica en vías de extinción. Las causas de su proceso evolutivo deben ser

d especificidad de su hábitat, junto a otros factores que analizaremos a
continuidad. Es de extramar que, existiendo lugares similares en el mismo ransi-
 commanded tamm, esta planta no haya sido capaz de colonizarlo de nuevo, si es que existió en alguna época; el motivo, hay que buscarlo en el hecho de ser un vi-
ismo veido y el suelo relativamente pasado, lo que implica que cualquier rál-

faga de vierno arranca casi todos los viajeros, con lo que los aquejados queda
muy cerca de la planta sobre; por otra parte, la geología del marco también
puede contribuir a su bajo poder de expansión, pues siendo una planta que hasta por encima de los 1700 m., es muy difícil que frecuen los profundos barrancos que separan cada uno de los núcleos montañosos de que consta el macizo de Málaga, dificultad esta vista igualmente por la falta de funcionalidad de los vie- nos.

In vista de lo anteriormente expuesto urge la necesidad de proteger esta especie con medidas estrictas. Entre ellas tenemos que destacar, en pri- mer lugar, la concienciación y conocimiento por los nativos de la gravedad de la im- portancia que supone la supervivencia de estos ejemplares que, por otro lado, no tienen ninguna utilidad práctica conocida; otra medida a tener por bien sería prohibir el pastoreo en los lugares conocidos como "manzana". Por ser un medio ecoló- gico muy importante, no sólo para ellos, sino también para otras especies, naci- me cuando estos lugares son de vacas o mula aprovechamiento pastoral. Al mismo tiempo, sería necesario recoger sus semillas con vis- tas a una expansión artificial en hábitats similares, dentro del mismo macizo o en tierras próximas (Casariego, Casaríla, La Saga, etc.), así como el cultivo en jardines botánicos.
Fig. 10.- Gentianella althaeoides Tour. Ogro. A, planta general; B, brácteas involucrales medianas; C, aquenio (escala 1 cm).
go pecíolo, de entrenas a alimadas, pinatífidas o pinatíferas, con segmentos lineares y el terminal mucho más alargado-dentado. Hojas caulinares inferiores oéllulas, pinatíferas, con segmentos lineares que disminuyen en número hacia arriba y quedan finalmente subfrondosas. Hojas medias y superiores enteras o asiriladas en base, lineares a oval-lanceoladas. Capitulos terminales, solitarios, erectos; involucro ovóide no adelgazado en la base que alcanza (24-30) mm. durante la madurez. Cáliz involucral glabro, pálido-verdoso, con 5 nervios en el dorso, las exteriores y medianas provistas de apéndice largamente triángulo, de color amarillo pálido; que lleva l-7 pares de cíclidos, concordantes con resto del apéndice, el cual es descripto en la base mediante una membrana de 1 mm. o menos de anchura; espina terminal derecha, ligeramente punteada, tricogénea, de unos 3 mm. de longitud, que destaca de los cíclidos laterales, aunque su longitud es levemente menor. Corolas siempre de color amarillo claro. Receptáculo con escamas de pelos que alcanzan 7-7,5 mm. de longitud. Aquenios 4-5 mm. de longitud, algo comprimidos lateralemente, lineares, adelgazados en la base, de color gris oscuro a casi negro cuando están bien maduros, estriados, pelosos bajo la liga. Vilano doble de color blanco; el interno con pelos escamosiformes cortos y densos; el externo alcanza 2-2,5 mm. de longitud y igual, por lo tanto, la mitad del aquenio.

Tipo: "In montibus Mariaeis pr. Despeñaperros, in schistosis Valdeflores, c. 800 m. alt. 26-VI-1924. GROS" (Ro lectótipo; véase BLANCA, 1981 cl.)

Nombre vernáculo: Escobilla.

Número cronológico y carácter endémico: P-Env.1218 (BLANCA, 1980: 361). Este es un caso en el que el fecundación del enteriza depende de un cambio en el número cromosómico. Concretamente, se ha producido una duplicación de todo el complejo; según los estudios del cariotipo, parece ser que se trata de un autopoliploide derivado, posiblemente, de Centaurea monticola Boiss. (1861), especie con la que está más separada. Centaurea citrigrota ocupa un área totalmente disjun-

ta de la presencia especie parental y coloniza un nicho ecológico diferente, ya que, mientras Centaurea monticola vive sobre terrenos margosos calizos, el ta-

neploide vive en suelos derivados de la reuterización de los granitos (BLANCA, 1981a). Por lo tanto, estaríamos ante un caso típico de apos景德ismo.

Distribución: (Fig. 11) Norte de la provincia de Jaén, en Sierra Morena, cerca de Despeñaperros.

Ecología: Planta silícolisa que vive sobre derrumbes finos, en taludes próximos a lugares viarios y, por lo tanto, algo extratípicos; los sueños son prematuros de muy escaso desarrollo y pobre en electrofóricos. Se extiende dentro del piso mesotérmico.

Fitogeografía: Tiene su óptimo en la clase Phragmion-Burnietetum ignei (Rivas Goday & Atienza 1972) Rivas Martínez, Iaco & Costa 1973, que incluye las comuni- dades de derrumbes y fiasmas, en mares de matorrales paleosólicos o del estrato cristalino en el grado de vegetación del Quercus illyr y más concretamente en la alian- za Gymnostoma-Quercion illyr Rivas Goday 1964, que comprende aquellas comunida- des sobre derrumbes finos o medios en la parte inferior de ladera, siempre bien soledados y con cierta influencia ruidera. Algunas veces aparece entre los "ja- rales", en aquellos lugares donde el sueño es menos profundo y pedregoso, por lo que VELASCO (1961) la incluye entre las características terrestres de la aso- ciación Salvia-Ustilago (terrepil); que propone como nueva dentro de la clase Cisto-Laricetales.

Comentario: FONTE OREX (1928) describió esta planta sobre matorral recolectado en Valdeveros, cerca de Devesillesones, el 8 de Junio de 1928. Sin embargo, no ha- mos hallado ningún pliego que lleve esa fecha; creemos que cuando FONTE OREX la recogió no la consideró especie nueva hasta estudiarla detalladamente, por lo que unió a GROS unos días después para que la recolectara. El abundante mate- rial recolectado por GROS fue distribuido en las fiasmas de Valdeveros. Esta especie ha permanecido durante mucho tiempo prácticamente ignorada; desde que GROS reco- gió esta planta y, posteriormente LACAITA en 1926, podemos asegurar que apenas ha sido heborizada, hasta que Rivas Goday y VELASCO lo hicieron en 1976. Esta es una de las más raras y menos conocidas de Valdeveros, pero no ha sido señalada por ningún científico alguno. Se debe, en la medida en que ocupa dicha especie, a que no se ha sabido señalar que en la comarca de Valdeveros hay algunos ejemplares: prueba de todo esto es que, a pesar de las intenciones de la Comisión de Investigación de Rivas Goday & BELLORIO llevarlo a cabo en es- ta zona por los años 40 y 41 no lo hicieron. Desde 1942 y 1943, no lograron encontrarlo. No parece oportuno señalar un párroco del trabajo de Rivas Goday & BELLORIO (1942) en el que aclara- ra la referencia a "loco claramente..." ya que en la Comisión no estamos en el que no existe por aquellas comarcas más valles con el muelle de Valdeveros, y
que algunos denominan así al de Valdeavros que visitamos en su principio, mara-
villas no duda por su belleza. Resultando con ello que las citas dados hasta ahora como Valdeavros habrá que corregirlas por Valdealvares. Hubo de puntuali-
sar, además, que en el herbario de la Facultad de Farmacia de Madrid (MA) exis-
ten tres pliegues recogidos por NINAS GÓMEZ (49 8810, 78795 y 77147) de las
provincias de Cáceres y Ciudad Real; sin embargo, debido al mal estado en que
se encuentran estos pliegues, es imposible asegurar que se trate de la misma espé-
cre.

PAV, en algunos pliegues depositados en el herbario del Jardín Botá-
nico de Madrid (MA), llegó a culminar a la C. citrulina como variedad de la
C. multiflora Ruiz. ex DC.: el crecido entre ambos táxones puede estar debido al
posible origen de C. citrulina, ya comentado anteriormente. Su existencia, exis-
ten claras diferencias entre ambas especies que se indican en la tabla III.

<table>
<thead>
<tr>
<th>Centaurea citrulina</th>
<th>Centaurea multiflora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tallos de 40-55(-75) cm.</td>
<td></td>
</tr>
<tr>
<td>Involucro de 12-19(-20) mm., ovado no</td>
<td></td>
</tr>
<tr>
<td>aplanado en la base.</td>
<td></td>
</tr>
</tbody>
</table>
| Espina terminal de las brácteas involu-
| croales derecha de 2 mm. de longitud, li-
| geramente más larga que los cíclidos inte-
| riores. |
| Flores amarillas. |
| Aquenios 4-5 mm. |
| Vllano 2-2,5 mm. ; ancho de largo que el |
| aquenio. |

| Tallos de 20-30(-40) cm. |
| Involucro 11-15 mm., cilíndrico-
| globose, estrechado en la base. |
| Espina terminal de las brácteas in-
| volucrales curvada-patente de 2-2,0 |
| (-3) mm. de longitud, casi 2 veces |
| más larga que los cíclidos interiores. |
| Flores purpureas, raramente amari-
| llentas. |
| Aquenios 3-3,5(-4) mm. |
| Vllano 1-1,5 mm.; 3 veces más corto |
| que el aquenio. |

Conservación: el status que consideramos adecuado para C. citrulina es el de "es
pie es en pielgus", en base a lo que exponemos a continuación. En primer lugar, hay que tener presente la extensión de su área de distribución; en segundo lugar, si tenemos en cuenta el pliego recogido por LAGATI el 9-VII-1956, depositado en el herbario del Jardín Botánico de Madrid (W 105846), en el que se indica: "... in dunea saxosiis sube Corverendas, copeiosemis", sugiere que esta especie era muy abundante hace tan solo medio siglo; en la actualidad, parece asegurar que no deben existir más de 700 ejemplares. Por otro lado, su hábitat característico, en taludes próximos a carreteras con cierta influencia ruderal, la hace extraordinariamente vulnerable, ya que cualquier ampliación de la calzada o limpieza de las dunes podría ponerla en serias dificultades. Como medidas de protección proponemos, ante todo, la expansión artifical de esta especie y el cultivo en jardines botánicos. Si bien la zona donde vive no es muy frecuentada, es necesario también una concientización y conocimiento por parte de los habitantes de esta tierra. Debido al bajo número de individuos, es lógico pensar en una prohibición de su recolección.

![Immagine](Degen & Debeaux in Degen, Magyar Bot. Lapok 5(11-12):1066). (Fig. 12)."
Fig. 12.- Centauraea (Andorra) 2 (S thieves in heran): A, parte general; B, brácteas involucrales medios; C, aquilea (estacas 1 cm).
con segmento terminal mayor, que desarrolla en tamaño ascendente y llega a ser casi simple, terminada en la base. Hojas suboblongas enteras, sesi-
les, de ovas a ligeramente espatuladas; en frecuencia la existencia de una hoja involucrante. Todos los segmentos foliares murcianos. Capítulos terminales, soli-
itarios, glabros, nudo subanguloso en su base; involucro de brácteas de al-
cuán 1.5 a 10-12 mm. durando la antesis, terminadas inclusivas de color verdoso, con 5 nervios prominentes en el borde y ligero tenuto lanuginoso. Brácteas exteriores y medios con ápice triangular, de base amplia y de color rojizo caqui. Ca-
si negro, provisto de 6-8 pares de cíclidos laternales concordantes, desgarrado en la base mediante las membranas de 1-1.5 mm. de anchura; espina terminal ligeramen-
te recurvada, tricromada, apenas más larga que los cíclidos (1.5-2 mm. de larga). Corola purpúrea. Debe destacarse con mecanismos de pliegues que alcanzan 7 mm. de longi-
tud. Amento 4 mm. de longitud, 5000 espermisos lateralmente, estriados, palo-
os a la luna, de color grísaceo claro en la madurez. Velo doble, de color ro-
jro-purpúrea cuando está muy maduro, el interior con pelos venéreos cortos y conoíentes. el extensor de unos 2 mm. de longitud, que apenas alcanza la mitad del amento.

Nombre vulgarel: Escobilla.

Nombre común en castellano y lenguaje automáticamente: Escobilla (BLANCA, 1980:265); en el estudio detallado del carpófito, se han observado ciertas variaciones en lo que respecta a la posición del carpófito en los creciementos de las poblaciones estudiadas (BLANCA, 1981), quizás debido a una variabilidad subyacente que aún podría es-
tar relacionada con el medio ambiente, ya que la área de distribución representa una encrucijada entre los ambientes Bárabo y el Levante español, lo que revela la existencia de presiones de selección diferentes que pueden influir en los táme-
nes que lo habitan (BLANCA, 1981). Se trata de una "cruz quedense" que sepa se-
ctas próximas se encontraron en el Este-Sur de la Península Ibérica y Norte de África, teniendo todos el mismo número cromosómico.

Distribución: (Fig. 17) Sureste de la provincia de Jum (Sierras de Castejón, la Cabrera y el Posto, extremo Sur de las Sierras de Segura y Casería).

Biogeografía: Sur del Subsector Caserense; características a esta unidad corridas dentro del Sector Subético (provincia pética).
Fig. 12: Distribución de la profesión de "Intendente" entre varones e individuos de la raza...
Ecología y fitocenología: planta calcícola que vive en suelos pedregosos de escaso desarrollo, tipo litoral o rendijas, en lugares muy expuestos. Llama su atención en el pie supranival-verano, aunque avista en muchas ocasiones al crepúsculo.

Vive en comunidades pertenecientes a la Al. Lepidula-Quinoaerasion boissieri Rivas Goñi & Rivas Martínez 1968 (Orden Poaceae) y constituida por materiales y terciario con gran cantidad de carbón y parte espeletiana. Cuando se presenta a más altitud la hemos observado formando parte de comunidades asociadas con la Al. Andraeanus-Agropyro maritimes 1961 (Orden Trismatinae zub.).
Diferenciación: ha sido un debate crítico sobre la validez de tales especies, que ha sido objeto de debate en varias publicaciones. El concepto de especies en la sistemática biológica es un tema controversial ya que las características que las definen son valoradas de diferentes formas en diferentes contextos. Sin embargo, la taxonomía sigue siendo un campo dinámico y evolutivo en constante revisión.

Conservación: Las especies en peligro de extinción son un tema crucial en la conservación ambiental. Las acciones para proteger estas especies son fundamentales para la salud de la vida en la Tierra. Sin embargo, la conservación de las especies puede ser una tarea desafiante en un mundo en constante cambio.

Referencias bibliográficas:

